Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inquiry ; 61: 469580231221288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240089

RESUMO

Shipping is considered a demanding environment that can significantly impact seafarers' well-being and mental health. This review aims to examine existing literature on the resilience of seafarers, with a focus on the measurement methods used. Furthermore, this study intends to gain a comprehensive understanding of the current state of research in the field of seafarers' resilience, examining the variations in defining and conceptualizing resilience across different studies and contexts. The review identified 99 studies published between 2003 and 2023, with ten studies being included in the final analysis. These studies employed various measurement methods and provided definitions of resilience. Five questionnaires were identified, with the Dispositional Resilience Scale-15 (DRS-15) being the most commonly used. Two of the selected studies had a longitudinal follow-up, while eight were cross-sectional. Four studies related to tankers, and an additional four studies focused on naval vessels, while two studies did not specify the vessel type. The publications were distributed in the period between 2003 and 2013 (two papers) and between 2013 and 2023 (eight papers). The identified themes encompassed shipboard stressors (three papers), sleep problems (two papers), occupational groups or attitudes (two papers), experiences in war (two papers), and intervention measures (one paper), highlighting the multidimensional nature of resilience within the maritime field. This review suggests a research gap, as it reveals that the topic of resilience in seafaring has been sparsely represented. Despite an increasing interest in recent years, research remains limited, particularly in the civilian maritime sector. Therefore, this review highlights the importance of understanding and promoting resilience among seafarers. While the variety of questionnaires used was limited, achieving consensus and standardization in resilience measurement is essential for more comparable and consistent research findings. Recognizing resilience as a crucial resource can promote the development of targeted interventions and support systems, enhancing seafarers' well-being and mental health.


Assuntos
Saúde Ocupacional , Resiliência Psicológica , Humanos , Saúde Mental , Navios , Inquéritos e Questionários
2.
Eur J Drug Metab Pharmacokinet ; 48(4): 411-425, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365440

RESUMO

BACKGROUND AND OBJECTIVES: Current anticoagulants pose an increased risk of bleeding. The development of drugs targeting factor XIa, like asundexian, may provide a safer treatment option. A human mass­balance study was conducted to gain a deeper understanding of the absorption, distribution, metabolism, excretion, and potential for drug-drug interaction of asundexian. Additionally, an overview of the biotransformation and clearance pathways for asundexian in humans and bile-duct cannulated (BDC) rats in vivo, as well as in vitro in hepatocytes of both species, is reported. METHODS: The mass balance, biotransformation, and excretion pathways of asundexian were investigated in six healthy volunteers (single oral dose of 25 mg [14C]asundexian) and in BDC rats (intravenous [14C]asundexian 1 mg/kg). RESULTS: Overall recovery of radioactivity was 101% for humans (samples collected up to 14 days after dosing), and 97.9% for BDC rats (samples collected in the 24 h after dosing). Radioactivity was mainly excreted into feces in humans (80.3%) and into bile/feces in BDC rats (> 94%). The predominant clearance pathways in humans were amide hydrolysis to metabolite M1 (47%) and non-labeled M9 with subsequent N-acetylation to M10; oxidative biotransformation was a minor pathway (13%). In rats, hydrolysis of the terminal amide to M2 was the predominant pathway. In human plasma, asundexian accounted for 61.0% of total drug-related area under the plasma concentration-time curve (AUC); M10 was the major metabolite (16.4% of the total drug-related AUC). Excretion of unmetabolized drug was a significant clearance pathway in both species (human, ~ 37%; BDC rat, ~ 24%). The near-complete bioavailability of asundexian suggests negligible limitations on absorption and first-pass metabolism. Comparison with radiochromatograms from incubations with human or rat hepatocytes indicated consistency across species and a good overall in vitro/in vivo correlation. CONCLUSIONS: Similar to preclinical experiments, total asundexian-derived radioactivity is cleared quantitatively predominantly via feces. Excretion occurs mainly via amide hydrolysis and as the unchanged drug.


Assuntos
Anticoagulantes , Fator XIa , Humanos , Ratos , Animais , Biotransformação , Oxirredução , Disponibilidade Biológica , Fezes , Administração Oral
3.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042252

RESUMO

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Assuntos
Insuficiência Cardíaca , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Remodelação Ventricular , beta Catenina , Cateninas , Monocrotalina/toxicidade , Transdução de Sinais , Modelos Animais de Doenças , Função Ventricular Direita
4.
Xenobiotica ; 52(5): 453-462, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35616579

RESUMO

Vericiguat is a soluble guanylate cyclase stimulator. The pharmacokinetics, absorption, metabolism, and excretion properties of vericiguat in rats and dogs and the distribution in rats are reported. [14C]-labelled vericiguat was studied in intact and bile duct-cannulated rats (oral and intravenous administration), and dogs (oral administration).Vericiguat reached maximum plasma concentrations at 1-3 h after oral administration. Absolute bioavailability was moderate in rats and high in dogs. Vericiguat was the most abundant component in plasma of rats and dogs.After oral administration to rats, radioactivity was widely distributed. Penetration into the brain was minimal. Elimination was rapid from most tissues in rats. Most of the radioactivity was excreted in faeces (rat: 81%, dog: 89%), while low amounts were excreted in urine (rat: 11%, dog: 4%). Clearance routes in both species were unchanged excretion and metabolism via glucuronidation and oxidative reactions. After intravenous administration to bile duct-cannulated rats, a relevant proportion of the dose (30%) underwent direct excretion into the gastrointestinal tract as unchanged vericiguat.


Assuntos
Compostos Heterocíclicos com 2 Anéis , Pirimidinas , Administração Oral , Animais , Cães , Fezes , Injeções Intravenosas , Ratos , Distribuição Tecidual
5.
Sci Rep ; 12(1): 3589, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246566

RESUMO

Soluble guanylate cyclase (sGC) requires a heme-group bound in order to produce cGMP, a second messenger involved in memory formation, while heme-free sGC is inactive. Two compound classes can increase sGC activity: sGC stimulators acting on heme-bound sGC, and sGC activators acting on heme-free sGC. In this rodent study, we investigated the potential of the novel brain-penetrant sGC stimulator BAY-747 and sGC activator runcaciguat to enhance long-term memory and attenuate short-term memory deficits induced by the NOS-inhibitor L-NAME. Furthermore, hippocampal plasticity mechanisms were investigated. In vivo, oral administration of BAY-747 and runcaciguat to male Wistar rats enhanced memory acquisition in the object location task (OLT), while only BAY-747 reversed L-NAME induced memory impairments in the OLT. Ex vivo, both BAY-747 and runcaciguat enhanced hippocampal GluA1-containing AMPA receptor (AMPAR) trafficking in a chemical LTP model for memory acquisition using acute mouse hippocampal slices. In vivo only runcaciguat acted on the glutamatergic AMPAR system in hippocampal memory acquisition processes, while for BAY-747 the effects on the neurotrophic system were more pronounced as measured in male mice using western blot. Altogether this study shows that sGC stimulators and activators have potential as cognition enhancers, while the underlying plasticity mechanisms may determine disease-specific effectiveness.


Assuntos
GMP Cíclico , Guanilato Ciclase , Animais , Masculino , Camundongos , Ratos , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Heme/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ratos Wistar , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores
6.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596056

RESUMO

Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Adulto , Animais , Células Cultivadas , Humanos , Hipertensão Pulmonar/etiologia , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
Xenobiotica ; 50(8): 967-979, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32003293

RESUMO

1. Darolutamide is a novel selective androgen receptor antagonist consisting of two pharmacologically equipotent diastereoisomers. The absorption, distribution, metabolism and excretion properties of darolutamide in rats are reported.2. Non- or [14C]-labelled darolutamide, its diastereoisomers and major metabolite were studied in intact and bile duct-cannulated rats (oral and intravenous administration), and rat hepatocytes.3. Darolutamide was quickly (1 h to reach maximum plasma concentration) and completely absorbed after oral administration. Absolute bioavailability was high. Keto-darolutamide was the most abundant metabolite in rat hepatocytes and the only major one in plasma. Interconversion between diastereoisomers was observed.4. After oral administration, radioactivity distributed widely and homogeneously. Penetration into brain was low (brain/blood ratio = 0.079). Elimination was rapid from most tissues. Excretion occurred rapidly, and routes were similar irrespective of administration routes. Complete mass balance was reached by 168 h post-dose. Most radioactivity (61-64%) was excreted in faeces, while relevant amounts (30-33%) were also excreted into urine. The main clearance routes were metabolism via oxidative reactions and glucuronidation. After intravenous administration, a relevant extent of the dose (20%) underwent extrabiliary excretion as darolutamide.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacocinética , Pirazóis/farmacocinética , Administração Oral , Animais , Bile/metabolismo , Disponibilidade Biológica , Líquidos Corporais , Fezes , Absorção Intestinal , Ratos , Distribuição Tecidual
8.
Biomed Res Int ; 2018: 3293584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511676

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and a rise in right ventricular (RV) afterload. The increased RV afterload leads to right ventricular failure (RVF) which is the reason for the high morbidity and mortality in PAH patients. The objective was to evaluate the therapeutic efficacy and antiremodeling potential of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the soluble guanylate cyclase stimulator riociguat in a model of pressure overload RV hypertrophy induced by pulmonary artery banding (PAB). Mice subjected to PAB, one week after surgery, were treated with either sildenafil (100 mg/kg/d, n = 5), riociguat (30 mg/kg/d, n = 5), or vehicle (n = 5) for 14 days. RV function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometry. Both sildenafil and riociguat prevented the deterioration of RV function, as determined by a decrease in RV dilation and restoration of the RV ejection fraction (EF). Although both compounds did not decrease right heart mass and cellular hypertrophy, riociguat prevented RV fibrosis induced by PAB. Both compounds diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Treatment with either riociguat or sildenafil prevented the progression of pressure overload-induced RVF, representing a novel therapeutic approach.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Citrato de Sildenafila/administração & dosagem , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Inibidores da Fosfodiesterase 5/administração & dosagem , Pressão , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia
10.
Physiol Rep ; 5(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28330950

RESUMO

Right ventricular (RV) remodeling represents a complex set of functional and structural adaptations in response to chronic pressure or volume overload due to various inborn defects or acquired diseases and is an important determinant of patient outcome. However, the underlying molecular mechanisms remain elusive. We investigated the time course of structural and functional changes in the RV in the murine model of pressure overload-induced RV hypertrophy in C57Bl/6J mice. Using magnetic resonance imaging, we assessed the changes of RV structure and function at different time points for a period of 21 days. Pressure overload led to significant dilatation, cellular and chamber hypertrophy, myocardial fibrosis, and functional impairment of the RV Progressive remodeling of the RV after pulmonary artery banding (PAB) in mice was associated with upregulation of myocardial gene markers of hypertrophy and fibrosis. Furthermore, remodeling of the RV was associated with accumulation and activation of mast cells in the RV tissue of PAB mice. Our data suggest possible involvement of mast cells in the RV remodeling process in response to pressure overload. Mast cells may thus represent an interesting target for the development of new therapeutic approaches directed specifically at the RV.


Assuntos
Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mastócitos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/diagnóstico por imagem , Hipertensão Pulmonar/diagnóstico por imagem , Hipertrofia Ventricular Direita/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pressão Ventricular/fisiologia
11.
Eur Respir J ; 46(4): 1084-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26113671

RESUMO

Limited literature sources implicate mast-cell mediator chymase in the pathologies of pulmonary hypertension and pulmonary fibrosis. However, there is no evidence on the contribution of chymase to the development of pulmonary hypertension associated with lung fibrosis, which is an important medical condition linked with increased mortality of patients who already suffer from a life-threatening interstitial lung disease.The aim of this study was to investigate the role of chymase in this particular pulmonary hypertension form, by using a bleomycin-induced pulmonary hypertension model.Chymase inhibition resulted in attenuation of pulmonary hypertension and pulmonary fibrosis, as evident from improved haemodynamics, decreased right ventricular remodelling/hypertrophy, pulmonary vascular remodelling and lung fibrosis. These beneficial effects were associated with a strong tendency of reduction in mast cell number and activity, and significantly diminished chymase expression levels. Mechanistically, chymase inhibition led to attenuation of transforming growth factor ß1 and matrix-metalloproteinase-2 contents in the lungs. Furthermore, chymase inhibition prevented big endothelin-1-induced vasoconstriction of the pulmonary arteries.Therefore, chymase plays a role in the pathogenesis of pulmonary hypertension associated with pulmonary fibrosis and may represent a promising therapeutic target. In addition, this study may provide valuable insights on the contribution of chymase in the pulmonary hypertension context, in general, regardless of the pulmonary hypertension form.


Assuntos
Quimases/metabolismo , Quimases/fisiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Animais , Bleomicina/química , Quimases/antagonistas & inibidores , Modelos Animais de Doenças , Endotelina-1/metabolismo , Ensaio de Imunoadsorção Enzimática , Hemodinâmica , Humanos , Hipertrofia Ventricular Direita/enzimologia , Imuno-Histoquímica , Pulmão/enzimologia , Pulmão/metabolismo , Mastócitos/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Mesocricetus , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Radioimunoensaio , Distribuição Aleatória , Fator de Crescimento Transformador beta1/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 35(5): 1236-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25745058

RESUMO

OBJECTIVE: Despite modern therapies, pulmonary arterial hypertension (PAH) harbors a high mortality. Vascular remodeling is a hallmark of the disease. Recent clinical studies revealed that antiremodeling approaches with tyrosine-kinase inhibitors such as imatinib are effective, but its applicability is limited by significant side effects. Although imatinib has multiple targets, expression analyses support a role for platelet-derived growth factor (PDGF) in the pathobiology of the disease. However, its precise role and downstream signaling events have not been established. APPROACH AND RESULTS: Patients with PAH exhibit enhanced expression and phosphorylation of ß PDGF receptor (ßPDGFR) in remodeled pulmonary arterioles, particularly at the binding sites for phophatidyl-inositol-3-kinase and PLCγ at tyrosine residues 751 and 1021, respectively. These signaling molecules were identified as critical downstream mediators of ßPDGFR-mediated proliferation and migration of pulmonary arterial smooth muscle cells. We, therefore, investigated mice expressing a mutated ßPDGFR that is unable to recruit phophatidyl-inositol-3-kinase and PLCγ (ßPDGFR(F3/F3)). PDGF-dependent Erk1/2 and Akt phosphorylation, cyclin D1 induction, and proliferation, migration, and protection against apoptosis were abolished in ßPDGFR(F3/F3) pulmonary arterial smooth muscle cells. On exposure to chronic hypoxia, vascular remodeling of pulmonary arteries was blunted in ßPDGFR(F3/F3) mice compared with wild-type littermates. These alterations led to protection from hypoxia-induced PAH and right ventricular hypertrophy. CONCLUSIONS: By means of a genetic approach, our data provide definite evidence that the activated ßPDGFR is a key contributor to pulmonary vascular remodeling and PAH. Selective disruption of PDGF-dependent phophatidyl-inositol-3-kinase and PLCγ activity is sufficient to abolish these pathogenic responses in vivo, identifying these signaling events as valuable targets for antiremodeling strategies in PAH.


Assuntos
Hipertensão Pulmonar/genética , Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Remodelação Vascular/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/patologia , Camundongos , Mutação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Biomed Res Int ; 2015: 438403, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25667920

RESUMO

OBJECTIVE: The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. METHODS: Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. RESULTS: Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. CONCLUSION: 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.


Assuntos
Insuficiência Cardíaca/metabolismo , Coração/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptor 5-HT2B de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Disfunção Ventricular Direita/metabolismo , Animais , Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/prevenção & controle , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , Miocárdio/metabolismo , Receptor 5-HT2B de Serotonina/análise , Receptor 5-HT2B de Serotonina/genética
14.
ACS Appl Mater Interfaces ; 6(14): 11368-75, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24918631

RESUMO

Hydrogen and oxygen surface-terminated nanocrystalline diamond (NCD) films are studied by the contactless time-resolved microwave conductivity (TRMC) technique and X-ray photoelectron spectroscopy (XPS). The optoelectronic properties of undoped NCD films are strongly affected by the type of surface termination. Upon changing the surface termination from oxygen to hydrogen, the TRMC signal rises dramatically. For an estimated quantum yield of 1 for sub-bandgap optical excitation the hole mobility of the hydrogen-terminated undoped NCD was found to be ∼0.27 cm(2)/(V s) with a lifetime exceeding 1 µs. Assuming a similar mobility for the oxygen-terminated undoped NCD a lifetime of ∼100 ps was derived. Analysis of the valence band spectra obtained by XPS suggests that upon oxidation of undoped NCD the surface Fermi level shifts (toward an increased work function). This shift originates from the size and direction of the electronic dipole moment of the surface atoms, and leads to different types of band bending at the diamond/air interface in the presence of a water film. In the case of boron-doped NCD no shift of the work function is observed, which can be rationalized by pinning of the Fermi level. This is confirmed by TRMC results of boron-doped NCD, which show no dependency on the surface termination. We suggest that photoexcited electrons in boron-doped NCD occupy nonionized boron dopants, leaving relatively long-lived mobile holes in the valence band.

15.
ACS Nano ; 8(6): 5757-64, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24738731

RESUMO

The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

16.
Exp Physiol ; 98(8): 1274-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23873899

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease that is associated with a poor prognosis and results in right heart dysfunction. While pulmonary vascular disease is the obvious primary pathological focus, right ventricular hypertrophy (RVH) and right ventricular (RV) dysfunction are major determinants of prognosis in PAH. Our knowledge about the molecular physiology and pathophysiology of RV hypertrophy and failure in response to pressure overload is still limited, and most data are derived from left heart research. However, the molecular mechanisms of left ventricular remodelling cannot be generalized to the RV, because the right and left ventricles differ greatly in their size, shape, architecture and function. Despite the recent advances in diagnosis and treatment of PAH, little is known about the molecular and cellular mechanisms that underlie the transition from compensatory to maladaptive RV remodelling. The cGMP-phosphodiesterase 5 (PDE5) pathway is one of the extensively studied pathways in PAH, but our knowledge about cGMP-PDE5 signalling in RV pathophysiology is still limited. For this purpose, there is need for animal models that can represent changes in the RV that closely mimic the human situation. The availability of an animal model of pressure-overload-induced RVH (e.g. pulmonary artery banding model) provides us with a valuable tool to understand the differences between adaptive and maladaptive RVH and to explore the direct effects of current PAH therapy on the heart. In this report, we discuss myocardial regulatory effects of cGMP-PDE5 signalling in preclinical models of RV pressure overload for understanding the physiological/pathophysiological mechanisms involved in maladaptive RVH.


Assuntos
GMP Cíclico/metabolismo , Ventrículos do Coração/fisiopatologia , Função Ventricular Direita/fisiologia , Pressão Ventricular/fisiologia , Animais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia
17.
Cytokine ; 64(1): 43-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764551

RESUMO

Cardiac pressure overload-induced hypertrophy and pathological remodelling frequently leads to right ventricular dysfunction, which is the most frequent cause of death in patients with pulmonary arterial hypertension. Nowadays, accumulating reports support the concept that proinflammatory cytokines and growth factors play crucial roles in the failing heart. We recently identified Fn14 as an endogenous key regulator in cardiac fibrosis in the PAB (Pulmonary Artery Banding) pressure-overload model. Right ventricular overload after PAB is also characterized by hypertrophy. The aim of this study was to determine whether right ventricular (RV) cardiac hypertrophy induced by PAB is mediated by the TWEAK/Fn14 axis. After baseline MRI, Fn14(-/-) mice and wild-type (WT) littermates were randomly assigned to two groups: (1) SHAM-operated (n⩾4, per genotype) and (2) PAB (n⩾11, per genotype). The results of MRI and histological analysis demonstrated that Fn14(-/-) mice exhibit less PAB-induced cardiac hypertrophy compared to WT littermates. Moreover, Fn14 overexpression in cultured adult rat cardiomyocytes enhanced cardiomyocyte size. Collectively, our studies demonstrate that Fn14 ablation attenuates RV hypertrophy after PAB and that activation of TWEAK/Fn14 signaling promotes cardiomyocyte growth in vitro. These results nominate Fn14 as a potential novel target for the treatment of heart hypertrophy.


Assuntos
Hipertrofia Ventricular Direita/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Coração/crescimento & desenvolvimento , Hipertensão Pulmonar/cirurgia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Artéria Pulmonar/cirurgia , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Receptor de TWEAK
18.
Am J Respir Cell Mol Biol ; 49(3): 491-500, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23642043

RESUMO

Acute and sustained hypoxic pulmonary vasoconstriction (HPV), as well as chronic pulmonary hypertension (PH), is modulated by nitric oxide (NO). NO synthesis can be decreased by asymmetric dimethylarginine (ADMA), which is degraded by dimethylarginine dimethylaminohydrolase-1 (DDAH1). We investigated the effects of DDAH1 overexpression (DDAH1(tg)) on HPV and chronic hypoxia-induced PH. HPV was measured during acute (10 min) and sustained (3 h) hypoxia in isolated mouse lungs. Chronic PH was induced by the exposure of mice to 4 weeks of hypoxia. ADMA and cyclic 3',5'-guanosine monophosphate (cGMP) were determined by ELISA, and NO generation was determined by chemiluminescence. DDAH1 overexpression exerted no effects on acute HPV. However, DDAH1(tg) mice showed decreased sustained HPV compared with wild-type (WT) mice. Concomitantly, ADMA was decreased, and concentrations of NO and cGMP were significantly increased in DDAH1(tg). The administration of either Nω-nitro-l-arginine or 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one potentiated sustained HPV and partly abolished the differences in sustained HPV between WT and DDAH1(tg) mice. The overexpression of DDAH1 exerted no effect on the development of chronic hypoxia-induced PH. DDAH1 overexpression selectively decreased the sustained phase of HPV, partly via activation of the NO-cGMP pathway. Thus, increased ADMA concentrations modulate sustained HPV, but not acute HPV or chronic hypoxia-induced PH.


Assuntos
Amidoidrolases/genética , Arginina/metabolismo , Hipertensão Pulmonar/genética , Hipóxia/genética , Pulmão/metabolismo , Óxido Nítrico/metabolismo , Amidoidrolases/metabolismo , Animais , Arginina/análogos & derivados , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , GMP Cíclico/metabolismo , Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Camundongos , Nitroarginina/farmacologia , Técnicas de Cultura de Órgãos , Oxidiazóis/farmacologia , Transdução de Sinais , Vasoconstrição/efeitos dos fármacos
19.
Basic Res Cardiol ; 108(2): 325, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325387

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease for which no cure is yet available. The leading cause of death in PAH is right ventricular (RV) failure. Previously, the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) has been associated with different fibrotic diseases. However, so far there is no study demonstrating a causal role for endogenous Fn14 signaling in RV or LV heart disease. The purpose of this study was to determine whether global ablation of Fn14 prevents RV fibrosis and remodeling improving heart function. Here, we provide evidence for a causative role of Fn14 in pulmonary artery banding (PAB)-induced RV fibrosis and dysfunction in mice. Fn14 expression was increased in the RV after PAB. Mice lacking Fn14 (Fn14(-/-)) displayed substantially reduced RV fibrosis and dysfunction following PAB compared to wild-type littermates. Cell culture experiments demonstrated that activation of Fn14 induces collagen expression via RhoA-dependent nuclear translocation of myocardin-related transcription factor-A (MRTF-A)/MAL. Furthermore, activation of Fn14 in vitro caused fibroblast proliferation and myofibroblast differentiation, which corresponds to suppression of PAB-induced RV fibrosis in Fn14(-/-) mice. Moreover, our findings suggest that Fn14 expression is regulated by endothelin-1 (ET-1) in cardiac fibroblasts. We conclude that Fn14 is an endogenous key regulator in cardiac fibrosis and suggest this receptor as potential new target for therapeutic interventions in heart failure.


Assuntos
Hipertrofia Ventricular Direita/prevenção & controle , Miocárdio/patologia , Receptores do Fator de Necrose Tumoral/fisiologia , Disfunção Ventricular Direita/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Citocina TWEAK , Endotelina-1/fisiologia , Hipertensão Pulmonar Primária Familiar , Fibrose/prevenção & controle , Imunofluorescência , Hipertensão Pulmonar/complicações , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Miofibroblastos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Receptor de TWEAK , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Regulação para Cima , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
20.
J Pathol ; 229(2): 242-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097221

RESUMO

Pulmonary fibrosis is a devastating and progressive parenchymal lung disease with an extremely poor prognosis. Patients suffering from idiopathic pulmonary fibrosis (IPF) display a compromised lung function alongside pathophysiological features such as highly increased production of extracellular matrix, alveolar epithelial cell dysfunction, and disordered fibroproliferation - features that are due to a dysregulated response to alveolar injury. Under pathophysiological conditions of IPF, abnormally high concentrations of nitric oxide (NO) are found, likely a result of increased activity of the inducible nitric oxide synthase (NOS2), giving rise to products that contribute to fibrosis development. It is known that pharmacological inhibition or knockdown of NOS2 reduces pulmonary fibrosis, suggesting a role for NOS inhibitors in the treatment of fibrosis. Recent reports identified a critical enzyme, dimethylarginine dimethylaminohydrolase (DDAH), which is exceedingly active in patients suffering from IPF and in mice treated with bleomycin. An up-regulation of DDAH was observed in primary alveolar epithelial type II (ATII) cells from mice and patients with pulmonary fibrosis, where it co-localizes with NOS2. DDAH is a key enzyme that breaks down an endogenous inhibitor of NOS, asymmetric dimethylarginine (ADMA), by metabolizing it to l-citrulline and dimethylamine. DDAH was shown to modulate key fibrotic signalling cascades, and inhibition of this enzyme attenuated many features of the disease in in vivo experiments, suggesting a possible new therapeutic strategy for the treatment of patients suffering from IPF.


Assuntos
Amidoidrolases/metabolismo , Fibrose Pulmonar Idiopática/enzimologia , Pulmão/enzimologia , Amidoidrolases/antagonistas & inibidores , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...